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ABSTRACT

Remotely sensed imagery represents a growing source of in-
formation to many practical applications. Technologies to
rapidly process imagery data into useful information products
has not kept pace with the rapidly growing volume and com-
plexity of imagery data increasingly available from Govern-
ment and commercial sources. Significant processing speed
improvements have been achieved by implementation of clas-
sification methods on the Highly-parallel Integrated Virtual
Environment (HIVE) - a Beowulf class system using Parallel
Virtual Machine (PVM) software. This paper discusses our
parallel processing architecture and how three different clas-
sification algorithms performed in this computing environ-
ment. Also discussed are conclusions and recommendations
for future work to apply these techniques to more complex
data an further improve the processing speeds.

Keywords. theHIVE, classification, parallel algorithms,
Neural Networks, Gaussian Maximum Likelihood Classifier,
Polynomial Discriminant Method, Mixture Model Neural
Network, MIMD, SPMD.

1. Introduction

Data volume has been growing exponentially due to increas-
ingly sophisticated methods of data collection. Whether it
be from medical imagery or satellite instrumentation; the
amount of data being generated has begun to tax the ca-
pacity of modern processing and storage equipment. The
increased spatial and spectral resolution of emerging satel-
lite sensors significantly increases the volume of information
that can be generated from the data. The value of the in-
formation derived from imagery increases significantly with
increased timeliness of delivery.

As more sources of imagery become available, there will not
only be a data deluge - creating a massive problem of storage
and retrieval, but also processing bottlenecks since informa-
tion needs to be generated very rapidly. Though the problem
of storage and retrieval are daunting issues, we will not deal
with these directly. Rather, we will examine methods of data
analysis that improve speed for more timely delivery of in-
formation from raw imagery data. Thus in this paper we
will consider the classification of remotely sensed images - in
particular the parallelization of three methods that increases
processing speeds.

The following sections of the paper describe:

1. The basics of parallel processing and in particular the

paradigm of single program multiple data (SPMD) used
in this paper.

2. The pattern recognition problem as it pertains to im-
age classification and contains a brief discussion of the
three classification methods used in our computational
experiments. The mathematics and accuracy analysis
of these three methods (Gaussian Maximum Likelihood
Classification, Polynomial Discriminant Method and the
Mixture Model Neural Network) are discussed in greater
detail in [4].

3. How the parallel code was applied to classify a large
LANDSAT scene that we have in a data storage and
retrieval system developed at Code 935 called RODIN
[16].

4. The issues that have been raised by the present work.

2. Parallel processing background

Parallel processing has been defined in [2] as: A large collec-
tion of processing elements that can communicate and coop-
erate to solve large problems fast. This definition makes no
specification of the processing elements, their organization,
the communication channels or the organization and manner
in which these may cooperate.

Conceptually, parallel processing may be thus seen to consist
of the following steps:

1. Partition a task into smaller tasks.
2. Send subtasks to multiple processors.

3. Each processor (running a subtask) receives needed
data.

4. Each machine independently processes its data.

5. If necessary exchange data through communication
channel (network).

6. Continue computations.

7. Integrate results from processors and present them to
user.

In [1] a taxonomy of parallel architecures is described. This is
a macroscopic classification in which the name given to an ar-
chitecture depends on how the instructions are related to the
data being processed. Figure 1 below shows the relationships
of the various types of architectures.
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Figure 1: Flynn’s taxonomy. SISD = Single Instruction Sin-
gle Data, SIMD = Single Instruction Multiple Data, MISD
Multiple Instruction Single Data, MIMD Multiple Instruction
Multiple Data.

1. SISD — Single Instruction Single Data. Conven-
tional computers (i.e., the workstation on your desk)
have one stream of instructions. Each instruction works
on a single data stream.

2. SIMD - Single Instruction Multiple Data. Vector
processing machines are SIMD machines. Here each el-
ement of a vector (we consider scalars to be degenerate
vectors) is broken up into separate streams. However, a
single instruction stream remains, i.e., multiplication of
each element of a vector by constant.

3. MISD — Multiple Instruction Single Data. This
item is generally considered void. See [3] for details.

4. MIMD - Multiple Instruction Multiple Data.
This item consists of groups of linked processors (re-
cently linking has been done by high speed networks).
Each processor has its own instruction stream.

Both SIMD and MIMD have come into common usage in
computer science. Below we describe a second level taxonony

for MIMD [14].

1. DM—MIMD - Distributed Memory MIMD. In
this variant of MIMD), individual processors have their
own memory and CPU shown in Figure 2. Every com-
puter can talk to every other computer via the network.

2. SM-MIMD - Shared Memory MIMD. Figure 3
shows how each processor can access a common mem-
ory via a high speed network. Such a configuration is
frequently called a symmetric multiprocessor.

2.1. Message passing and SPMD

Recently, DM-MIMD has become one of the most popular
parallel proceeing architectures. As explained earlier, this
consits of independent processors each with its own memory

Node 1 Node 2 Node N
M M M
E E E
M M o000 M
CPU o CPU o CPU o
R R R
Y Y Y
l Network

Figure 2: Block diagram of DM-MIMD.

and a copy of its own program as well as data. Messages
(for data exchange and control) are sent between proces-
sors (senders and receivers). The system we have described
is called a message—passing system. A particular form of
message—passing systems is called SPMD — Single Program
Multiple Data '. What this acronym means is that the same
program is running on multiple machines (nodes) and data is
given to each node for processing. Note that the data itself
may be passed around between nodes.

A particular variant of SPMD is the master—slave paradigm.
Here the master is in charge of talking to and distributing
the work to each slave. Usually, the slaves communicate with
only the master. A little thought shows that point based im-
age processing (i.e., where each pixel in an image is treated by
the same method) is easily amenable to master—slave based
parallel processing. Here the image would be broken up into
sections, passed to the various nodes each of which would
perform the same operations on the sub—sections. The re-
sults would be passed back to the master for reassembly. In
the extreme case each pixel could be passed to an individual

2
processor.

2.2. theHIVE

theHIVE (Highly-parallel Integrated Virtual Environment) is
a low cost, coarse grained parallel processing machine using

I This is a subset of of the DM-MIMD style computing
2There are natural limitations to this, noted in subsequent
sections.

Node 1 Node 2 Node N
CPU CPU eoee CPU
Network

Shared Memory

Figure 3: Block diagram of SM-MIMD.



[tem Qty Description
Processor 2 Dual Pentium 2, 200 MHz
RAM 64 MB
Hard Disk 2.5 Gigabyte/node
Network 100 Base T Ethernet card
0S LINUX

Table 1: DRONE description

off the shelf hardware to keep prices down. Currently the
configuration consists of 64 dual processor Pentiums (refered
to by its developers as BEES - Busy Environmental Entity)
running LINUX connected by a 100baseT private ethernet
LAN. Additionally, there are two types of front—end nodes
that researchers use to program the BEES. The first type is
known as QUEEN (QUasi Enabler of ENtities) and is used to
administer the entire HIVE while the DRONEs (DRiver Of
Nominal Entities) are portals into theHIVE and the BEES.
theHIVE has either the Parallel Virtual Machine (PVM) or
Message Passing Interface (MPI) software thereby enabling
parallel programming using a message passing paradigm. It
runs on the REDHAT version of LINUX. Additionally there
are one or more queens and drones. The queen administers
theHIVE and the drone permits access to it. The configura-
tion of BEES and DRONES is shown in Table 1.

3. The pattern recognition problem

Figure 4 shows the standard pattern recognition box diagram
where P stands for pattern space, F' for feature space and C
for classification space. This section addresses issues dealing
with transferring a signal from the pattern space through
feature space and on to classification space. In each transfer,
it 1s hoped that there will be an increase in intelligibility of
the signal. Typically as we go from P to F there is a reduction
in dimension of the original signal and from F' to C we are
actally placing the signal in one or more pre—defined classes
that make sense to the user of the system. Naturally, we
may wish to go directly from P to F. Nothing in our model
precludes this.

P o F ~- C

Figure 4: The pattern recognition problem

For example, one way to proceed from P to F|, i.e., from
pattern space to feature space is via principal components
analysis. Dimensionality reduction is achieved via projection
of the original data onto the principal subspaces. Usually,
the first few principal components contain most of the infor-
mation contained in the original bands. A good reference for
this and other transformations from P to F is [8].

Similarly we can go from F' (feature space) to classification
space C. This requires a general pattern recognition algo-

rithm. Discriminant functions are a particularly convenient
way to proceed. Figure 5 schematically shows how the trans-
formation from F' to C is achieved by using, for example, a

Neural Network (M?N?) [4].
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Figure 5: Going from F to C

3.1. The classifiers

Discriminant functions. In succeeding paragraphs we
will discuss image classifiers based on pattern recognition
techniques that use statistical discriminant functions. The
job of designing the pattern classifier consists of first divid-
ing the feature space into regions and then constructing the
classifier so that it will identify any measurement vector as
belonging to the class corresponding to the region in which it
falls. These regions are sometimes also known as decision re-
gions. Discriminant functions are part and parcel of classifier
design. Much of the discussion in this subsection comes from
several sources i.e., [5], [6], [7] and from a tutorial, survey
and some very recent results in [9].

Assume there are K classes and that the K decision regions
corresponding to these classes have been determined ® Sup-
pose we can find a set of K functions of X, which we denote
by g1(X), ¢2(X), -+ gx(X), having the property that gi (X)
has a larger value than any other of these functions whenever
X is a point in the k" decision region. These functions are
referred to as discriminant functions. Then, if we wish to
classify any X,, that is, determine to which decision re-
gion X, belongs, all we need to do is calculate the values of
91(Xu), g2(Xu), -+ gr(Xu). The point X, belongs to the

class having the largest g value. Formally we can write:

Let Sy denote the k'™ class. Decide X € Sy off
gr(X) > g;(X) forall j=1,2, -+ K.

Two discriminant functions can have equal values only at the
borders between their decision regions. A tie breaking rule
must be defined for these cases.

In order to extend the discussion to statistical discriminant
functions let f(X | Six) be the probability density function
(pdf) associated with the measurement vector X, given that
X is from class k. Let P(Sk) be the a priori probability of
class k. We can use the maximum likelihood decision
rule * to identify the class to which X belongs. It can be
stated as follows:

Decide X € Sk iff
F(X|Sk)P(Sk) > f(X| S)P(S;),5 =12, --- K.

3This is known as training. For each of the three classifiers we
have implemented we will discuss the relevalt training steps.
4Sometimes known as the mazimum a posteriori (MAP) rule.



In case we have no a priori knowledge the usual rule is to
assume a uniform probability distribution, i.e., equally likely
prior probabilities.

Below we discuss three classifiers that we have used for our
experiments. In each case the mathematical formulation for
training and classification is shown.

The gaussian maximum likelihood classifier (GMLC).
This classifier assumes that data from any given class can best
be described by a multivariate Gaussian, i.e., N (U, X).

Classification. The discriminant function in this case is:

(X=Uy).
(1)

Where, Uy is the sample mean vector and Xy is the sample

variance—covariance matrix of the k' class.

F(X|Sk) = In[P(S1)] -5 In [Sx|- (X~ U)T 57"

Training. Of course this begs the question: How are the
estimates of ¥x and Uy generated? They are generated from
the exemplars ugf), where ul¥) = [ufp - uf, - ul, )7
Here, k indexes the class and m indicates the m'" prototype
of class Sir. We also have a count of the total number of
exemplars from class Sg, denoted by My. The formulae for
the mean and covariance vector are:

M,
U = £fu) = 5 > uld (2)
Bk = E{(u-Up)(u-Uy)"} = P Z ~Uk) (i -Uy)".
(3)
Here, P = Mk_l

The polynomial discriminant function (PDM) The
PDM represents a polynomial approximation to the proba-
bilistic neural network (PNN). The PNN was found to be
exorbitantly slow in the classification phase (though rapid in
the training phase). Details of the PNN can be found in [12]
and [13].

Classification. The PDM is written in the form of a polyno-
mial upto terms of order r, the k' discriminant function can
be written in polynomial form as:
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As a consequence of our constraint on the polynomial (4),
the constraints on z; (in any of the terms in equation (4)) are

given by sz;ol z1 <.
Training. The general term in (4) is given by
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W is the i'" training pattern from the 0 < k" < M —1
category, Py is the total number of training patterns in class
k. Also, Cy; = W,?iVng/202 and o is a parameter that is
prechosen. Note the difference between Wg; which is a vector
an Wiymo which is a scalar and represents the first (Zeroth)
band of the m*® sample from the k'* class. For a detailed
discussion of the PDM see [9].

The mixture model neural network (M?N?) The mix-
ture model neural network is a step toward reducing the com-
plexity of the PNN while eliminating the problems associated
with the PDM. These issues are discussed in detail in [4] and

[9].

Classification. The mixture distribution (M>N?) is written
as:

M
FXISK) = > F(X1j, Se)e; (6)

Where, X is the input vector, a; is the weight of the gtk
density and Sy is the k" class. As mentioned earlier we shall
assume that all the components of the density are Gaussian
having mean vectors u; and variances 3; = o;I, where I
is the identity matrix, i.e., assuming a circularly symmetric
Gaussian. This is written as:

F(X15,5k) = (27%)"" exp {— (X)X ) } NG

Training. The fundamental issue with the M?>N? equa-
tion (6), is determining the parameters @ = {u;,3;, a,}
of the mixture distribution. In neural network terminology
these would be the “weights.” These are determined by the
Expectation Maximization (EM) algorithm that has found
use in a variety of fields including signal and image process-
ing in particular, and in general in any field where maximum
likelihood estimates have to be calculated from incomplete
data. Good references for the EM algorithm are [10], [11]
and [9].

4. Application

The classification methods discussed in the previous section
were parallelized for both training and classification on the-
HIVE. For training, each class statistic, for example the mean
vector and variance and covariance matrix of the gaussian
maximum likelihood classifier (GMLC) were obtained by hav-
ing a single machine handle all the training data for that class.
Thus, if there are N classes, N machines were used.

For classification, Figure 6 shows our processing steps. we
used a data archiving, querying and retrieval system called
RODIN (Regional Observation Digital Information Network)
[16] to obtain our data which consisted of a LANDSAT scene.
Once the data was available on the master on theHIVE it was
broken up into smaller pieces and each piece sent to a node.
Classification proceeded independently on each machine with
the results being sent back to the master for eventual delivery

to RODIN.

Details of RODIN, the data sets from RODIN and perfor-

mance results are given in the sections that follow.



4.1. Regional Observational Digital Infor-
mation Network - RODIN

A brief explanation of the RODIN [16] system is in order
since as it was used in our computational experiments. In
fact, as we shall see, our use of RODIN will illustrate certain
important performance issues.

RODIN is a generic configurable data system for:

1. Capturing near-real-time spatially indexable data from
a variety of sources (i.e., GIS, image, and point data sets

are all handled by RODIN).

Automatically processing the data into useful products.
Indexing the metadata.

Storing the data and metadata.

Processing client queries against the metadata.

A

Retrieving and delivering the data and metadata to
clients.

RODIN is:

1. Data format neutral - it can be configured to handle any
format with data stored in files.

2. Built on open source tools, so it can be installed for very
low cost.

3. Built with an open architecture, therefore custom clients
can be built to do specific processing on the data.

Master RODIN

TheHIVE

Figure 6: How theHIVE was used in our processing.

4.2. Test data

Initial test data for this work consisted of a Landsat 7 scene
Path 33 Row 33, collected on July 28, 1999. The scene covers
34,225 square km of the Baltimore—Washington region during
a substantial drought. Landsat 7 data is comprised of the
band structure seen in Table 2. Due to differences in ground
resolution, spectral overlap, and desire to keep processing
time manageable, only bands 1 through 4 were implemented
in the testing process. The test data cube was thus comprised
of 4 x 8091 x 7301 (bands x columns x rows). An image of
this region is shown in Figure 7.

In the near future the authors will be working with other
types of remotely sensed data to highlight other data volume

Band | Spectral Range Ground
pmeters Resolution (m)
1 0.45 - 0.515 30
2 0.525 - 0.605 30
3 0.63 - 0.690 30
4 0.75 - 0.90 30
5 1.55 - 1.57 30
6 10.4 - 12.5 60
Pan 0.52 - 0.90 15

Table 2: Landsat bands

issues dictated by sensor characteristics. These datasets will
represent high-resolution imagery (4 meter ground resolution
IKONOS from Space Imaging, Inc.) and high-dimensional
hyperspectral data (1, 2, and 3 meter ground resolution, upto
40 band data AISA: Airborne Imaging Spectrometer for Ap-
plications flown by 3DI of Easton, Maryland).

Selection of training data. The scene consists of many
landcover/landuse types; the megalopolis of the Washington
DC and Baltimore is obvious in the scene as is the highly
recognizable Chesapeake Bay. Other significant features are
the predominantly agricultural areas of Maryland’s Eastern
Shore and the eastern ridges of the Appalachian in the west-
ern part of the scene. The final major class in the scene in the
large cloud area in the northwest portion of the Landsat im-
age. Cloud areas were not masked out prior to classification
in order to test the functionality of the parallel classifications
first. These areas will later be masked to better assess the
accuracy of methods discussed herein.

To provide sufficient training points for the classifiers, it was
determined that 50x N points, where N equals the number of

Figure 7: Landsat scene of the Baltimore-Washington area
from July 28, 1999. This is a gray level version of a three
band color composite.



dimensions or bands would adequately describe the scene us-
ing the Anderson Level 1 classification scheme [15] °. In this
scene only the following classes were observed: Urban/Built
Up, Agriculture, Forest, Water, Clouds, and Fallow. We des-
ignated 200 points for each class as training pixels. Due to
the drought, there is potential for increased confusion among
classes, as dry grasses, bare soil, and many urban environ-
ments are spectrally similar during these conditions.

4.3. Performance results

Previous subsections described the parallel classifiers used,
the data system used (RODIN) as well as the data sets used in
the experiment. In this sections timing results are presented.
There is no discussion of the accuracy of the classifiers as
that is not within the scope of this paper.

Experiments were carried out in the following manner: The
parallel code for the classifiers (GMLC, M?*N? and PDM) was
run on 4, 8 16, 32 and 64 nodes of theHIVE. Each exper-
iment was repeated ten times in order to get averages and
standard deviations (representing in some sense the varia-
tion around the means). Figures 8 and 9 show the kinds
of speedups we might expect along with error bars. Note,
the speedups indicated in Figure 9 are the ratios of the time
taken for the algorithm on four machines to the time taken
on sixty—four. The reason for using 4 machines is because the
limited disk—space and main memory of a single node on the-
HIVE prevented us from using one, two and three machines.
Naturally, if one machine was used the speedups would be

higher.

Figure 8 shows the total time taken for processing. The actual
processing involved ©:

1. Requesting data from RODIN in chunks - since the
whole multi-band image will not fit into memory on
any one node on theHIVE.

2. Sending chunks to nodes for processing with the clasifi-

cation algorithm (GMLC, M?N?, PDM).
3. Returning classified chunks to the master for assembly.

4. The entire (one-band) classified image is sent to

RODIN.

Figure 9 shows the total time taken for processing minus the
time spent communicating with RODIN. There are two es-
sential differences between Figures 8 and 9. Firstly there are
the higher execution times. This is a natural consequence of
the method that was used to calculate the values that make
up the respective graphs. The second difference is more illu-
minating - namely there is very little variance in Figure 9 but
a large variance in Figure 8 (around the respective means).
This is a result of the communication uncertainty in the net-
work between RODIN and theHIVE. theHIVE has an in-
ternal 100baseT network. This is also true of the network
between RODIN and theHIVE. However, this link has much
more traffic than theHIVE’s internal network and thus there
is greater variablity in execution times.

5The Anderson Level 1 scheme defines the following classes -
urban, agricultural land, rangeland, forest land, water, wetland,
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Figure 8: Speedups on theHIVE for several classifiers. This
set of graphs shows the total time to process the data. See
text for details.

5. Conclusions and future work

As data rates, number of bands and image sizes continue to
increase, methods to process the data must also keep pace.
The method for parallel image classification of very large data
sets, described in this paper, is one such way to meet the
above mentioned goal.

There are several issues raised by this research that points to
further interesting research work. These are:

1. Figures 8, 9 show a stage of diminishing returns. At
this point, the image chunk size has reached a small
enough size that data transmission takes up a signifi-
cant portion of the time while processing has reached

barren, tundra and perennial snow or ice.
6 Also see Figure 6 for details
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Figure 9: Speedups on theHIVE for several neural networks.
This set of graphs shows the time to process the data mi-
nus the time spent communicating with RODIN. See text for
details.



a minimum. Naturally, using a faster internal network
would prevent the curves from flattening out between 16
and 32 machines. Myrinet [17], [18] is one such network
that is becoming popular on Beowulf class machines.

. The previous design could be sped up considerably by
a slight reworking of the architecture. Figure 10 shows
the alternate configuration. The key difference between
this and the one in Figure 6 is that the master has been
broken up into two entities. The first one (distributing
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